TSI Link™ Report Creator – Spatial Analysis

Workbook Guide (US)

Contents

Contents	
Overview	1
Worksheet Templates	
Worksheet Steps	3
Step 1 Select a Worksheet	
Step 2 Cover Sheet	
Step 3 Demographic Information	
For General Spatial Report, Select Desired Parameter	
Step 4 Load Study Data	
Step 5 Analyze Data	
Spatial Report Analysis	
Target Limits	
IAQ Assessment and Thermal Assessment Analyses	5
PM & Sound Array Analysis	5
PM & VOC Array Analysis	
Sound Map Analysis	
Layout View	
Step 6 Complete the Assessment	10
Annuadiy A - Configuration Shoot Parameters	11

Overview

The Spatial Analysis workbook contains a set of worksheets for TSI Link™ Report Creator that support spatial visualization. In addition to traditional table-based data analysis, these worksheets allow you to overlay summary measurement data onto virtually any image, including:

- Building floorplan
- Hand sketch of a work area or building
- Photo

- Equipment diagram
- HVAC ductwork diagram
- Map

The templates in this workbook are designed to provide spatial context for your measurements. They allow you and your report recipients to clearly understand spatial context such as contaminant "hotspots', impact on surrounding areas, unsafe work areas, etc. You can also use Microsoft® Excel® software's annotation tools to further enhance your visualizations.

Check out the Report Creator Product Page for guides, videos and more resources including: setting up an account, installing the application, using the study manager, using the layout view, customizing report creator templates, etc. This guide builds upon and supplements those guides.

Worksheet Templates

The table below lists the worksheets available in the A-B comparison workbook.

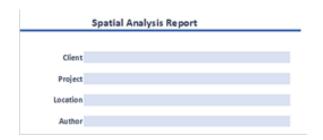
Worksheet	Supported Measurements	Supported Instruments	Applications
IAQ Assessment	CO (ppm) CO ₂ (ppm) VOC (ppb) PM 2.5 (ug/m³) PM 10 (ug/m³)	OmniTrak™ Solution Q-Trak™ XP Monitor	Air Quality testing around a public space, classroom, lab, commercial space, church, data center or other area. Helps to quickly visualize and analyze situations
PM & Sound Array	PM 2.5 (ug/m³) NC 0.3 – 0.5 um (#/m³) NC 0.5 – 1.0 um (#/m³) NC 1.0 – 2.5 um (#/m³) NC 2.5 – 4.0 um (#/m³) NC 4.0 – 10 um (#/m³)	OmniTrak™ Solution Casella™ 620	Visualize the sounds and air quality on different points around a shop floor or around a construction site. Determine optimum placement of a portable air purifiers in a working area. Sound and IAQ in a concert hall or large meeting space
PM & VOC Array	VOC (ppb) NC 0.3 – 0.5 um (#/m³) NC 0.5 – 1.0 um (#/m³) NC 1.0 – 2.5 um (#/m³) NC 2.5 – 4.0 um (#/m³) NC 4.0 – 10 um (#/m³)	OmniTrak™ Solution	Trouble shooting sources of air pollution or irritants. Spot checking a garage, shop floor or production line. Checking a science lab area.
Sound Map	LCSmax (dB) LCpeak (dB)	OmniTrak™ Solution Casella™ 620	Analyzing the sound around gathering or work area
Spatial Report	A parameters from Appendix A	Many different Instruments	Visualize any one of 69 parameters around a floor plan, school, lab, product plant or other area.
Thermal Assessment	Temperature (C) Dew Point (C) Wet Bulb (C) RH (%) Barometric Pressure (inHg)	Q-Trak™ XP Monitor VelociCalc™ Meter	Optimize HVAC by measuring temperature gradient in an office, home, or manufacturing facility. Quickly take the measurements for the space and clearly visualization the dynamics

NOTES:

The IAQ Assessment Worksheet is designed to display key indoor air quality gases and particulate matter measurements. The
Thermal Assessment Worksheet does the same for temperature and humidity measurements. These two worksheet templates
operate in a similar manner.

Worksheet Steps

Step 1 Select a Worksheet

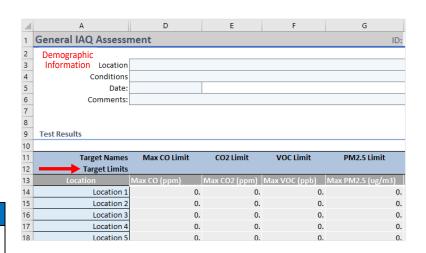

The Spatial Analysis Workbook is one of many that are available. An <u>overview of the workbooks available is on the Report Creator Product Page</u>.

A list of the worksheet in this Spatial Analysis Workbook can be found the Worksheet Templates section.

Step 2 Cover Sheet

This workbook contains a very simple Cover sheet that can be customized to suit your needs. See the *Customizing Report Creator Templates* to learn how. Other sheets can be added to your workbook, if desired.

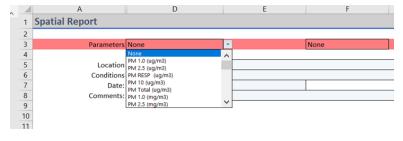
The bottom of the Cover sheet includes information for the Spatial Report Worksheet. If the Cover sheet is deleted from the workbook, the Spatial Report Worksheet will not function.


Step 3 Demographic Information

After you have created a blank worksheet, you can enter whatever demographic information you want into the report header. You may also change the "Location N" names to something more meaningful if desired.

You can also add or edit target maximum limits for each gas/PM in Row 12. (The Thermal worksheet includes *both* minimum and maximum targets.) If you do not want to display a target limit, simply leave the cell blank.

NOTICE


You can also enter target limits into the worksheet templates if you want to make them static and avoid re-entering them. Refer to *Customizing Report Creator Templates* on the Report Creator product page.

For General Spatial Report, Select Desired Parameter

The TSI® instrument portfolio can generate a wide range of measurements. It would be impractical to create templates for all possible permutations. The *General A-B Report* provides a way for you to define an A-B comparison for any three measurements you like.

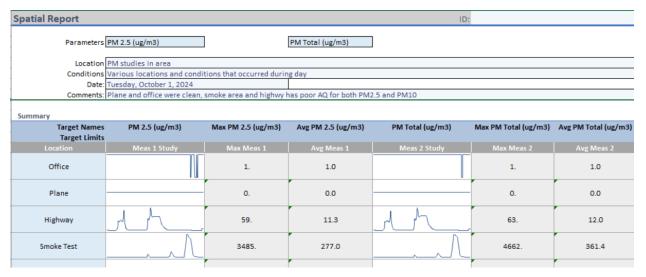
After you have created a blank A-B General Report worksheet, you can choose the parameters desired.

You must select between one and three parameters, Before importing any measurement data. The Parameter row is colored red to remind you of this.

Step 4 Load Study Data

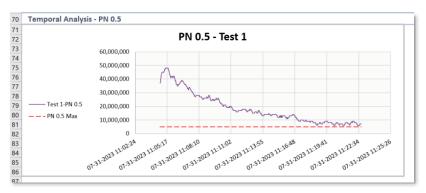
Import up to ten studies using the <u>Study Manager</u> or *File Import. Make sure the study names match the labels you added above. Swap them if necessary. When ready, click Add Data to import data into the worksheet. <i>The measurement data is loaded further down the sheet and* the statistical summary table is compiled with the calculated maximum, average, and minimum values.

The Spatial Analysis workbook can load **up to 10 studies** in each worksheet. The two conditions can be described in the free text fields at the top of the sheet.


Step 5 Analyze Data

The data analysis sections differ between worksheets, as shown in the following examples.

Spatial Report Analysis


This versatile workbook template enables customers to compare data from two different types of sensors, for example:

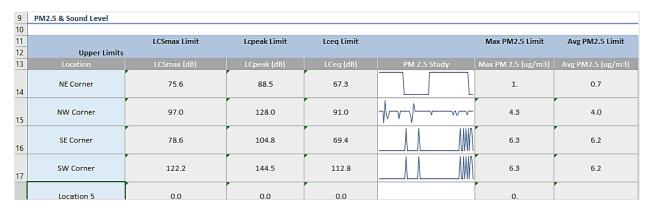
- Comparing Ozone and VOC monitors together around an area using Q-Trak[™] Monitor or OmniTrak[™] Solution.
- Comparing the PM 2.5 and PM 10 reading that in a simple and clear way. Could be from OmniTrak™ Solution or DustTrak™ Monitor.

Target Limits

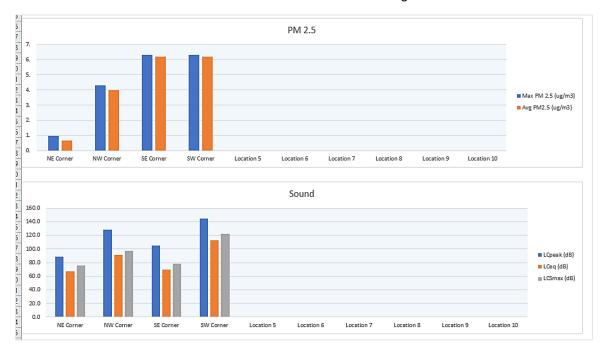
Set Target limits as desired to the maximum values, as highlighted below. These limits will be displayed on the chart to provide context. The different types of measurements have different target limits, of course, but they are all managed in similar ways. **Each measure and the target limit are displayed in a chart**, along with the target limits defined in the data summary table.

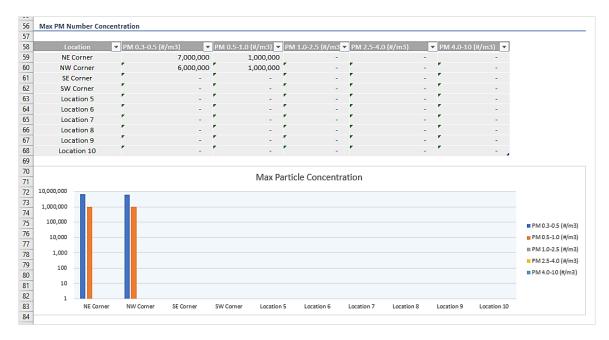
IAQ Assessment and Thermal Assessment Analyses

The Test Results section includes a table to show key IAQ measurements. If you have added a target limit, the summary measurement will turn red if the target was exceeded.

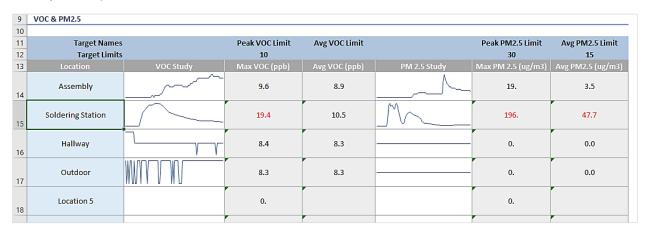

9	Test Results						
10							
11	Target Names	Max CO Limit	CO2 Limit	VOC Limit	PM2.5 Limit	Avg PM2.5 Limit	PM10 Limit
12	Target Limits		1200		15		
13	Location	Max CO (ppm)	Max CO2 (ppm)	Max VOC (ppb)	Max PM2.5 (ug/m3)	Avg PM2.5 (ug/m3)	Max PM10 (ug/m3)
14	Break Room	2.	408.	0.	14.	14.	0.
15	Conference Room 3	1.	768.	100.	127.	127.	21.
16	Board Room	0.	1843.	0.	13.	13.	2.
17	East Stairwell	0.	553.	800.	64.	64.	14.
18	West Stairwell	6.	412.	0.	12.	12.	1.
19	Northeast Cubes	3.	1210.	200.	37.	37.	9.
20	North Cubes	3.	708.	0.	7.	7.	0.
21	Northwest Cubes	2.	817.	0.	6.	6.	0.
22	Team Room	1.	633.	0.	5.	5.	0.
23	Restrooms	0.	633.	0.	5.	5.	0.,

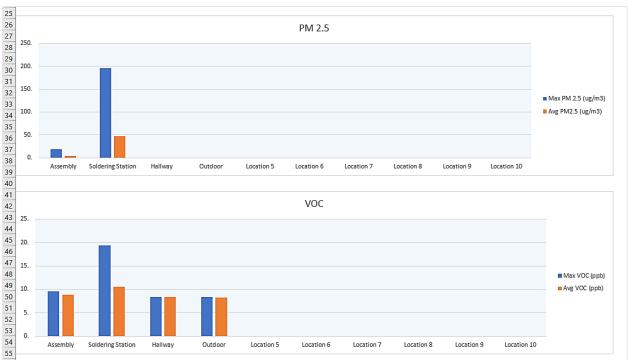
PM & Sound Array Analysis


NOTICE


The *PM & Sound Array* worksheet combines data files from two different instruments. Each location name has two prefixes – "PM:" and "Sound:". When you import studies, it is important that you select the proper prefix with the location.

The Test Results section includes a summary table that combines both the sound and PM measurements for each location. If you have added a target limit, the summary measurement will turn red if the target was exceeded. A column chart helps visually compares these measurements.


The particle number concentration is also shown in both tabular form and log-scale column chart.

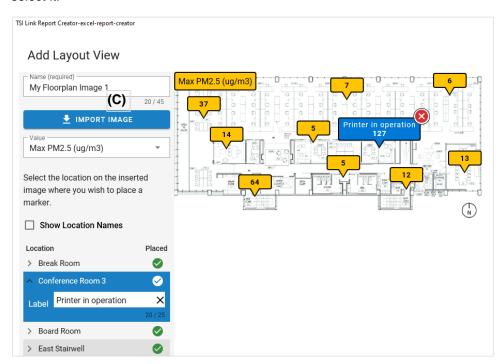

PM & VOC Array Analysis

The Test Results section includes a summary table that displays both Particulate Matter and VOC measurements. If you have added a target limit, the summary measurement will turn red if the target was exceeded. A column chart helps visually to compare these measurements.

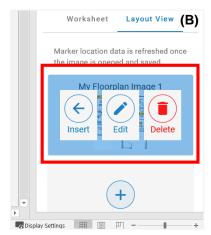
The particle number concentration is also shown in both tabular form and log-scale column chart.

Sound Map Analysis

Two key sound level measurements are displayed in the table. These same measurements are displayed in a column chart below it. To help educate the work staff, a CDC-developed sound level guide is also shown.


6					
7	1	I CC (JD)	LCpeak (dB)		
	Location Drill Press	LCSmax (dB) 75.6	88.5		
9	Stamping Machine	97.0	128.0		
10	Lathe	78.6	104.8		
11	Shredder	122.2	144.5		
12	Location 5				
13	Location 6				
14	Location 7				
15	Location 8				
16	Location 9				
17	Location 10				
	160.0	Sound Level			
18	140.0				
	120.0				
	80.0				
	60.00			■ LCpeak (dB)	
19	40.0 III LCSmax (dB)				
20	O.O TOWN PROPERTY AND STREET S				
21	the top the top top top top top top top				
22	37"				

CDC Reference		
	Average	Typical Response
	Sound	(after routine or repeated
Everyday Sounds	Level(dB)	exposure)
C-6		Sounds at these dB levels
Softest sound that can	0	typically don't cause any
be heard		hearing damage
Normal breathing	10	
Ticking watch	20	
ricking wateri	20	
Soft whisper	30	
Softwriisper	30	
Deficerent	40	
Refrigerator hum	40	
Normal conversation, air		
conditioner	60	
Washing machine,		You may feel annoyed by th
dishwasher	70	noise
disriwasriei		Hoise
City traffic (inside the		
city trainic (inside the	80-85	You may feel very annoyed
car)		
Gas-powered		Damage to hearing possible
lawnmowers and leaf	80-85	
blowers		after 2 hours of exposure
		Damage to hearing possible
Motorcycle	95	after about 50 minutes of
		exposure
Approaching subway		
train, car horn at 16 feet		
(5 meters), and sporting		Hearing loss possible after 1
events (such as hockey	100	minutes
playoffs and football		minutes
games)		
The maximum volume		
level for personal		
listening devices; a very		
loud radio, stereo, or		Hearing loss possible in les
television; and loud	105-110	than 5 minutes
entertainment venues		trian 3 minutes
(such as nightclubs,		
bars, and rock concerts)		11
Shouting or barking in	110	Hearing loss possible in less
the ear		than 2 minutes
Standing beside or near	120	Pain and ear injury
sirens Firecrackers	140-150	Pain and ear injury


Layout View

You can now use the summary data created above and provide a spatial visualization of it. You can overlay any desired measurements onto a floorplan, photo, or other image. Click <u>Layout View</u> in Report Creator. Then click the **Add** icon (see image A).

The Layout View tool then opens (image B). If you wish, you can change the default name of the picture. Then click **Import Image** (image C). Navigate to the folder that contains your image and select it.

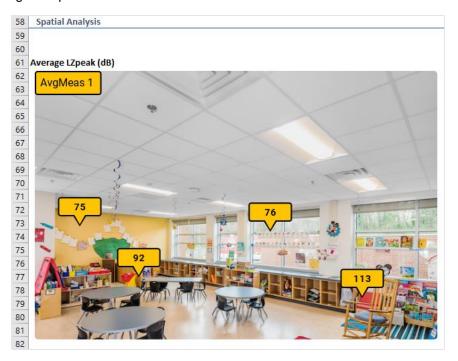
You now have to mark the measurement locations on your image. The first location in the list is automatically highlighted in blue. Click this location on the map. The Layout Tool advances to the next location. Repeat the location marking process until all locations are placed.

If you need to change a marked location, click the bubble annotation and drag it to the correct spot. (If you click the red X, that location will become unmarked.)

Now select which measurement you would like to display in your report. Also, if you wish to display the location names along with the measurement, check that box.

You can also add a label to any of the measurements by clicking the bubble annotation and expanding the location in the left column. Type in the label text.

When finished, click **DONE**.


A thumbnail of your image will now be displayed in Report Creator. To add it to the report, first click the destination cell in the worksheet that you want to place the image. Then hover over the thumbnail image in Report Creator and click **Insert**.

If you want to show additional measurement diagrams in your report, hover over the thumbnail and click **Edit**. Change the display value and click **DONE**. Click the destination cell in the worksheet and repeat the insertion process. With your images inserted into the report, you can now add additional annotations using Microsoft® Excel® software's tools. You may find either of these tools useful:

- 1. Click **Insert** in the Microsoft[®] Excel[®] ribbon. Click the **Shapes** icon and select a callout. Drag and size the callout block. Move the pointer as desired and enter in the text.
- 2. Click **Draw** in the Microsoft® Excel® ribbon. Select the desired pen color. Circle areas of the image and draw lines to a cell. Add comments in the cell.

This is what the drawing tools produce:

Step 6 Complete the Assessment

To complete the report, you can add recommendations under the Conclusions section.

The print layout for this sheet does not include the measurement data in the blue tables at the bottom of the sheet. They will not appear in a PDF export either.

Appendix A - Configuration Sheet Parameters

Below is a list of parameters available for the Spatial Report Worksheet.

PM 1.0 (ug/m³) MICROGRAMS_PER_CUBIC_METER PM 2.5 (ug/m³) MICROGRAMS_PER_CUBIC_METER PM RESP (ug/m³) MICROGRAMS_PER_CUBIC_METER PM 10 (ug/m³) MICROGRAMS_PER_CUBIC_METER PM 10 (ug/m³) MICROGRAMS_PER_CUBIC_METER PM Total (ug/m³) MILLIGRAMS_PER_CUBIC_METER PM 1.0 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM RESP (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM Total (mg/m³) MILLIGRAMS_PER_CUBIC_METER NC 0.3 - 0.5 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 2.5 - 4.0 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³)	Metric	Units
PM 2.5 (ug/m³) MICROGRAMS_PER_CUBIC_METER PM RESP (ug/m³) MICROGRAMS_PER_CUBIC_METER PM 10 (ug/m³) MICROGRAMS_PER_CUBIC_METER PM 10 (ug/m³) MICROGRAMS_PER_CUBIC_METER PM 1.0 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 2.5 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 2.5 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM RESP (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER NC 0.3 - 0.5 (#/m³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT		
PM RESP (ug/m³) MICROGRAMS_PER_CUBIC_METER PM 10 (ug/m³) MICROGRAMS_PER_CUBIC_METER PM Total (ug/m³) MICROGRAMS_PER_CUBIC_METER PM 1.0 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 2.5 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM RESP (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM Total (mg/m³) MILLIGRAMS_PER_CUBIC_METER NC 0.3 - 0.5 (#/m³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/tf³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/tf³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/tf³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/tf³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/tf³) COUNT_PER_CUBIC_FOOT NC 1.0 - 10 (#/tf³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/tf³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/tf³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_MILLION SO2 (ppb) PARTS_PER_BILLION		
PM 10 (ug/m³) MICROGRAMS_PER_CUBIC_METER PM Total (ug/m³) MICROGRAMS_PER_CUBIC_METER PM 1.0 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 2.5 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM RESP (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM Total (mg/m³) MILLIGRAMS_PER_CUBIC_METER NC 0.3 - 0.5 (#/m³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_BILLION SO2 (ppb) PARTS_PER_BILLION	· · · · ·	
PM Total (ug/m³) MICROGRAMS_PER_CUBIC_METER PM 1.0 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 2.5 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM RESP (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM Total (mg/m³) MILLIGRAMS_PER_CUBIC_METER NC 0.3 - 0.5 (#/m³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 2.5 - 4.0 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_BILLION SO2 (ppb) PARTS_PER_BILLION		
PM 1.0 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 2.5 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM RESP (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM Total (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM Total (mg/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 2.5 - 4.0 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_BILLION SO2 (ppb) PARTS_PER_BILLION		
PM 2.5 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM RESP (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM Total (mg/m³) MILLIGRAMS_PER_CUBIC_METER NC 0.3 - 0.5 (#/m³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 2.5 - 4.0 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_BILLION SO₂ (ppb) PARTS_PER_BILLION		
PM RESP (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM Total (mg/m³) MILLIGRAMS_PER_CUBIC_METER NC 0.3 - 0.5 (#/m³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 2.5 - 4.0 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_BILLION SO₂ (ppb) PARTS_PER_BILLION		
PM 10 (mg/m³) MILLIGRAMS_PER_CUBIC_METER PM Total (mg/m³) MILLIGRAMS_PER_CUBIC_METER NC 0.3 - 0.5 (#/m³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 2.5 - 4.0 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_BILLION SO₂ (ppb) PARTS_PER_BILLION		
PM Total (mg/m³) MILLIGRAMS_PER_CUBIC_METER NC 0.3 - 0.5 (#/m³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 2.5 - 4.0 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_BILLION SO₂ (ppb) PARTS_PER_BILLION		
NC 0.3 - 0.5 (#/m³) COUNT_PER_CUBIC_METER NC 0.5 - 1.0 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 2.5 - 4.0 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_BILLION SO2 (ppb) PARTS_PER_BILLION	, , ,	
NC 0.5 - 1.0 (#/m³) COUNT_PER_CUBIC_METER NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 2.5 - 4.0 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_BILLION SO2 (ppb) PARTS_PER_BILLION		MILLIGRAMS_PER_CUBIC_METER
NC 1.0 - 2.5 (#/m³) COUNT_PER_CUBIC_METER NC 2.5 - 4.0 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_BILLION SO2 (ppb) PARTS_PER_BILLION	NC 0.3 - 0.5 (#/m ³)	COUNT_PER_CUBIC_METER
NC 2.5 - 4.0 (#/m³) COUNT_PER_CUBIC_METER NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_MILLION SO2 (ppb) PARTS_PER_BILLION	NC 0.5 - 1.0 (#/m ³)	COUNT_PER_CUBIC_METER
NC 4.0 - 10 (#/m³) COUNT_PER_CUBIC_METER NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_MILLION SO2 (ppb) PARTS_PER_BILLION	NC 1.0 - 2.5 (#/m ³)	COUNT_PER_CUBIC_METER
NC 0.3 - 0.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_MILLION SO2 (ppb) PARTS_PER_BILLION	NC 2.5 - 4.0 (#/m ³)	COUNT_PER_CUBIC_METER
NC 0.5 - 1.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_MILLION SO2 (ppb) PARTS_PER_BILLION	NC 4.0 - 10 (#/m ³)	COUNT_PER_CUBIC_METER
NC 1.0 - 2.5 (#/ft³) COUNT_PER_CUBIC_FOOT NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_MILLION SO2 (ppb) PARTS_PER_BILLION	NC 0.3 - 0.5 (#/ft ³)	COUNT_PER_CUBIC_FOOT
NC 2.5 - 4.0 (#/ft³) COUNT_PER_CUBIC_FOOT NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO ₂ (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_MILLION SO ₂ (ppb) PARTS_PER_BILLION	NC 0.5 - 1.0 (#/ft ³)	COUNT_PER_CUBIC_FOOT
NC 4.0 - 10 (#/ft³) COUNT_PER_CUBIC_FOOT CO2 (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_MILLION SO2 (ppb) PARTS_PER_BILLION	NC 1.0 - 2.5 (#/ft ³)	COUNT_PER_CUBIC_FOOT
CO ₂ (ppm) PARTS_PER_MILLION Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_MILLION SO ₂ (ppb) PARTS_PER_BILLION	NC 2.5 - 4.0 (#/ft ³)	COUNT_PER_CUBIC_FOOT
Formaldehyde (ppb) PARTS_PER_BILLION CO (ppm) PARTS_PER_MILLION SO ₂ (ppb) PARTS_PER_BILLION	NC 4.0 - 10 (#/ft ³)	COUNT_PER_CUBIC_FOOT
CO (ppm) PARTS_PER_MILLION SO ₂ (ppb) PARTS_PER_BILLION	CO ₂ (ppm)	PARTS_PER_MILLION
SO ₂ (ppb) PARTS_PER_BILLION	Formaldehyde (ppb)	PARTS_PER_BILLION
	CO (ppm)	PARTS_PER_MILLION
	SO ₂ (ppb)	PARTS_PER_BILLION
Ozone (ppb) PARTS_PER_BILLION	Ozone (ppb)	PARTS_PER_BILLION
NO ₂ (ppb) PARTS_PER_BILLION	NO ₂ (ppb)	PARTS_PER_BILLION
CL (ppm) PARTS_PER_MILLION	CL (ppm)	PARTS_PER_MILLION
NH ₃ (ppm) PARTS_PER_MILLION	NH ₃ (ppm)	PARTS_PER_MILLION
VOC (ppm) PARTS_PER_MILLION	VOC (ppm)	PARTS_PER_MILLION
VOC (ppb) PARTS_PER_BILLION		PARTS_PER_BILLION

 $\textbf{TSI Incorporated} - \textit{Visit our website } \underline{\textbf{www.tsi.com}} \text{ for more information.}$

USA Tel: +1 800 680 1220 UK Tel: +44 149 4 459200 France Tel: +33 1 41 19 21 99 Germany Tel: +49 241 523030

India Tel: +91 80 67877200 China Tel: +86 10 8219 7688 Singapore Tel: +65 6595 6388 TSI and the TSI logo are registered trademarks of TSI Incorporated in the United States and may be protected under other country's trademark registrations. Microsoft and Excel are registered trademarks of Microsoft Corporation.